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Abstract

The response characteristics and selectivity coefficients of an unmodified carbon paste electrode (CPEs) towards Ag+, Cu2+ and Hg2+

were evaluated. The electrode was used as an indicator electrode for the simultaneous determination of the three metal ions in their mixtures
via potentiometric titration with a standard thiocyanate solution. A three-layered feed-forward artificial neural network (ANN) trained by
back-propagation learning algorithm was used to model the complex non-linear relationship between the concentration of silver, copper
and mercury in their different mixtures and the potential of solution at different volumes of the added titrant. The network architecture and
parameters were optimized to give low prediction errors. The optimized networks were able to precisely predict the concentrations of the
three cations in synthetic mixtures.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The use of both carbon paste electrodes (CPEs) and
chemically modified carbon paste electrodes (CMCPEs)
may result in very sensitive and promising analytical meth-
ods [1–3]. More interesting designs of CPEs are usually
reported in association with carbon paste-based flow cells
[4], electrochemical detectors,[5] coulometric [6], am-
perometric[7,8], and potentiometric[9] sensors, or some
sensing devices for special in vivo measurements[10,11].
Unmodified CPEs have already been used for the potentio-
metric determination of traces of silver[12] and copper ions
[13].

The simultaneous determination of several analytes in a
given sample is now an interesting area in chemometrics
[14,15]. In recent years, artificial neural network (ANN) as a
powerful non-parametric non-linear modeling technique has
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attracted increasing interest[16,17]. The strength of model-
ing with layered, feed-forward ANNs lies in the flexibility of
the distributed soft model defined by the weight of the net-
work. The multilayer feed forward neural network trained
with back-propagation learning algorithm becomes an in-
creasingly popular technique[18]. The application of ANN
to non-linear calibration of ion selective array[19–21] and
multi-metal analysis utilizing optical sensors[22–24], quan-
titative structure-activity relationship[25], optimization of
experimental conditions[26] and modeling of kinetic data
[27] have already been reported. Recently, we reported the
application of ANN to the non-linear calibration by using
derivative spectra[28].

The application of multivariate calibration method to the
potentiometric titration data was introduced by Lindberg and
Kowalski [29]. After that, the PLS calibration method has
been applied to different potentiometric titration methods
[30,31]. In our previous work, we discussed some limita-
tions of these methods and proposed an ANN model to pro-
cess the nonlinear relationship between the concentration of
acids in a given mixture (as an independent variable) and
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the pH of solution at different volumes of the titrant added
(as dependent variables)[32].

In this work, we used a three-layer ANN with back-propa-
gation of error algorithm for modeling the relationship
between potential and concentration through a multi-
component potentiometric titration of Ag+, Cu2+ and Hg2+
with thiocyanate as a titrant using an unmodified carbon
paste electrode as the indicator electrode.

2. Experimental

2.1. Apparatus and reagents

The titrations were carried out in a batch system in which
an unmodified carbon paste electrode was used as an indi-
cator electrode and a calomel electrode as a reference elec-
trode. The potential was measured by a digital pH-meter
(Metrohm, model 654).

All reagents used were of analytical reagent grade. Dou-
bly distilled deionized water was used throughout. A 1.0 M
potassium thiocyanate solution of was prepared by dissolv-
ing appropriate amount of KSCN in water and diluting
to 500 ml. Adjustment of the ionic strength of the sample
solutions was made by a potassium nitrate solution. Sil-
ver(I), copper(II) and mercury(II) solutions of 0.100 M were

Table 1
Concentrations of different cations in the binary and ternary standard solutions

Sample Mixture

Ag+–Cu2+(mM) Ag+–Hg2+(mM) Cu2+–Hg2+(mM) Ag+–Cu2+–Hg2+(mM)

Ag+ Cu2+ Ag+ Hg2+ Cu2+ Hg2+ Ag+ Cu2+ Hg2+

1 2.0 4.0 0.4 8.0 2.0 0.8 1.0 12.0 2.0
2 6.0 4.0 0.8 16.0 2.0 1.0 4.0 14.0 1.2
3 8.0 2.0 1.4 6.0 8.0 1.2 8.0 2.0 1.0
4 16.0 10.0 0.8 4.0 10.0 1.6 14.0 2.0 0.6
5 18.0 14.0 0.0 0.0 16.0 2.0 16.0 2.0 1.4
6 20.0 16.0 0.1 0.2 0.8 0.0 6.0 2.0 0.6
7 0.2 0.0 0.1 0.6 1.4 0.0 4.0 0.2 1.2
8 0.4 0.6 0.1 0.8 0.4 0.1 1.0 1.4 1.0
9 0.0 0.8 0.0 1.2 2.0 0.2 16.0 1.0 1.2

10 1.0 1.0 0.3 1.4 1.0 0.1 8.0 0.6 1.6
11 1.4 0.0 0.1 1.8 0.8 0.2 0.6 8.0 0.4
12 1.6 1.8 0.1 2.0 8.0 0.2 2.0 4.0 1.8
13 2.0 1.0 0.8 4.0 1.0 0.4 1.0 2.0 0.0
14 0.2 10.0 0.1 0.4 16.0 0.0 10.0 2.0 0.2
15 4.0 0.8 0.1 6.0 0.8 0.6 10.0 1.0 0.2
16 0.6 6.0 4.0 0.2 6.0 0.2 1.4 0.4 0.6
17 4.0 6.0 2.0 0.1 4.0 0.4 2.0 6.0 0.8
18 – – – – – – 1.8 0.8 0.1
19 – – – – – – 2.0 1.6 0.2
20 – – – – – – 10.0 1.4 0.6
21 – – – – – – 12.0 1.0 1.4
22 – – – – – – 4.0 4.0 1.0
23 – – – – – – 6.0 0.6 0.6
24 – – – – – – 2.0 1.4 0.8
25 – – – – – – 12.0 1.0 1.6
26 – – – – – – 1.0 12.0 2.0

prepared by dissolving suitable amounts of their nitrate
salts and diluting to 1000 ml.

2.2. Preparation of carbon paste electrode

Pure graphite powder (0.1 g) and liquid paraffin (Nojul,
0.06 g) were placed in a 25 ml beaker and mixed well for
15–20 min to form a uniform paste. Electrode bodies were
made from disposable 1 ml polyethylene syringes, the tip of
which had been cut off with a razor blade. These bodies were
filled with approximately 0.3 ml of carbon paste. Smooth
surfaces were obtained by applying manual pressure to the
piston while holding the electrode surface against a smooth
solid support. A fresh carbon paste electrode of a shiny
appearance was prepared by squeezing out a small amount
of the paste, scrapping off the excess against a conventional
paper and polishing the electrode on a smooth paper. The
electrical connection was made with a copper wire.

2.3. Procedure

In a typical titration, suitable amounts of individual
cation or cation mixtures were placed in a 100 ml vessel and
5.0 ml of 1.0 M potassium nitrate was added to the solution
and diluted to 50 ml with distilled water. The stirring solu-
tion was then titrated with a 0.1 M potassium thiocyanate
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solution, using a digital burette. In the presence of carbon
paste electrode, as an indicator electrode, and calomel refer-
ence electrode (SCE) the potential was recorded after each
0.1 ml addition of the titrant. For each solution, 50 data
points were recorded.

2.4. Standard solutions

Binary mixtures of the three cations (i.e. Ag+–Hg2+,
Ag+–Cu2+, Hg2+–Cu2+) as well their ternary mixtures
Ag+–Hg2+–Cu2+ were analyzed. InTable 1, the concen-
trations of standard solutions in the binary and ternary mix-
tures of the cations are presented. In order to evaluate the
performance of the ANN model, eight standard solutions
were considered in the prediction set. The concentrations
of cations in the mixtures were in themillimolar range and
selected randomly.

2.5. Data processing and ANN modeling

The data matrix used as input for the neural network was
the potential of standard solutions in the presence of different
volumes of thiocyanate solution at 0.1 ml intervals. Since the
large number of nodes in the input layer of the network (i.e.
the number of potential readings for each solution) increases
the CPU time for ANN modeling, the data matrix was factor
analyzed before introducing into the network and PC–ANN
model was run[33,34]. Consider that the data matrixD has

0

50

100

150

200

250

300

350

-7 -6 -5 -4 -3 -2
Log aM

Po
te

nt
ia

l(
m

V
)

Cu

Ag

Hg

Fig. 1. Calibration curves for silver, copper and mercury ions.

a dimension ofn × m, wheren and m are the number of
standard solutions and the number of potential readings for
each solution, respectively. The score and loading of this
matrix were calculated by the singular value decomposition
(SVD) [32]. A feed-forward three-layered ANN was used to
precede the titration data of cation mixtures for simultaneous
determination of silver, copper and mercury ions. The ANN
model was the same as that we discussed in our previous
paper[32]. Through the ANN modeling, the numbers of
input nodes (i.e. the number of principal componentsf) and
the number of nodes in the hidden layer were optimized.
The weights of hidden and output layers were adjusted by
back-propagation of error algorithm[17] through an iterative
procedure until a minimum value for standard error (S.E.) of
prediction was obtained. The momentum and learning rate
of the network were also optimized for minimum S.E.

3. Results and discussion

3.1. Potentiometric response and selectivity coefficients of
the CPE

Fig. 1 shows the potentiometric responses of the car-
bon paste electrode to silver, copper and mercury ions. The
slopes of the linear parts of the resulting curves are 29.1,
64.4, and >200 mV per decade for copper, silver and mercury
ion, respectively. The linear ranges of the resulting potential
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Fig. 2. Potentiometric titration curves for titration of 25 ml of 0.1 M silver,
0.1 M copper and 0.05 M mercury with 0.1 M potassium thiocyanate as
titrant, using the CPE as an indicator electrode.

versus pM plots for Cu2+ Ag+ and Hg2+ are 1.0× 10−6 to
3.2 × 10−3, 1.0 × 10−6 to 1.0× 10−3 and 2.0 × 10−6 to
1.0× 10−5 M, respectively.

The selectivity coefficients of the carbon paste electrode
for various cations were determined by to the match poten-
tial method (MPM)[35] and the results are summarized in
Table 2. From the data given inTable 2, it is obvious that
the selectivity coefficients of the CPE toward cations other
than Ag+, Cu2+ and Hg2+ ions are very low. However, the
selectivity of electrode toward Ag+, Cu2+ and Hg2+ cations
relative to each other is too high to allow their simultane-
ous determination in a given sample by simple titration or
calibration procedures.
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Fig. 3. Potentiometric titration curves for 50 ml of the binary and ternary mixtures of silver, copper and mercury with 0.1 M potassium thiocyanate titrant.
Concentrations of the cations in different mixtures used are: (0.01 M Ag+ and 0.0016 M Hg2+) (0.006 M Ag+ and 0.0006 M Cu2+) (0.01 M Cu2+ and
0.0016 M Hg2+) (0.014 M Ag+, 0.001 M Hg2+ and 0.018 M Cu2+).

Table 2
Selectivity coefficients of the CPE for different cations

Cation log KCu,M log KAg,M log KHg,M

Na+ −4.0 −4.0 −4.0
Al3+ −2.2 −2.6 −4.4
Cu2+ 0.0 −2.9 −2.8
Zn2+ −3.2 −4.0 −4.0
Pb2+ −3.1 −4.0 −4.0
Co2+ −4.0 −4.0 −4.0
Ca2+ −4.0 −4.0 −4.0
Ni2+ −3.0 −4.0 −4.0
Hg2+ 2.1 0.3 0.0
Cd2+ −4.0 −4.0 −4.0
Ag+ 1.9 0.0 −0.9
NH4

+ −2.6 −4.0 −4.0
La3+ −4.0 −4.0 −4.0
Ce3+ −4.0 −4.0 −4.0

3.2. Titration curves

Fig. 2shows the potentiometric titration curves of 25.0 ml
of individual cations (Ag+, 0.010 M; Cu2+, 0.010 M; and
Hg2+ 0.005 M) with a 0.100 M potassium thiocyanate solu-
tion. As it is seen, in the case of Ag+ and Hg2+, the poten-
tials are decreased during titration with increasing amount of
the thiocyanate solution, and possess well-defined inflection
points at the end-point of titrations due to the precipitation
of these cations in the presence of thiocyanate ion. As is
obvious, at the end-point of titration, one and two moles of
SCN− are consumed per each mole of Ag+ and Hg2+ ions,
respectively. On other hand, the potential of Cu2+ solution
is increased when titrated with thiocyanate ion and begin to
level off at a SCN−/Cu2+ molar ratio of about 1 (i.e. 2.5 ml
of titrant). This is most probably due to the formation of
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the CuSCN+ complex, the potential response of the CPE to
which is expected to be higher than that to the Cu2+ ion.
Obviously, since the titration curve obtained for Cu2+ does
not show a distinct inflection point, the exact amount of
copper ion cannot be determined quantitatively via titration
with SCN− using the CPE as an indicator electrode.

Fig. 3shows the potentiometric titration curves of the bi-
nary and ternary mixtures of the cations used. As it is obvi-
ous, the titration curves of the cations in their mixtures are
overlapped seriously. The titration curve obtained for the bi-
nary mixture of Ag+–Hg2+ shows a single inflection point,
which means that the simultaneous determination of these
cations is not feasible. While, in the case of the binary mix-
tures of Ag+–Cu2+ and Hg2+–Cu2+ and the ternary mix-
ture of Ag+–Cu2+–Hg2+, a sharp minimum is observed in
the resulting titration curves due to the end points of the
titration of Ag+, Hg2+ and the Ag+–Hg2+ mixture, respec-
tively. However, in all three cases, further addition of the
titrant will result in an increased potential of the electrode
due to the formation of CuSCN+ species in solution.

Thus, based on the above observations, it is not possi-
ble to determine simultaneously the amount each cation in
these mixtures. In spite of the fact that the unmodified CPE
has many advantages and has already been used as a good
indicator electrode for the determination of Ag+ and Cu2+
cations separately[12,13], it cannot be used for the deter-
mination of these cations as well as Hg2+ in the presence
of each other. Since the multivariate calibration methods are
good choices for processing the potentiometric titration data
[36], here, we tried an artificial neural network model to ana-
lyze the potentiometric titration data obtained for the binary
and ternary mixtures of Ag+, Cu2+ and Hg2+ cations.

3.3. ANN modeling

For each cation mixture used (i.e. Ag+–Cu2+,Ag+–Hg2+,
Cu2+–Hg2+ and Ag+–Cu2+–Hg2+), two sets of standard
solutions were prepared. From the potential data of the cal-
ibration sets of the above mixtures, whose concentrations
were selected randomly, the ANN model was optimized and
the data of the prediction sets were used to evaluate the per-
formance of the resulting ANN model. To obtain the best

Table 3
Different parameters of the optimized ANN model used

Parameter Mixture

Ag+–Cu2+ Hg2+–Cu2+ Ag+–Hg2+ Ag+–Cu2+–Hg2+

Ag+ Cu2+ Hg2+ Cu2+ Ag+ Hg2+ Ag+ Cu2+ Hg2+

Input nodes 3 3 3 3 5 5 10 10 10
Hidden nodes 5 2 2 4 2 3 3 4 5
Output nodes 1 1 1 1 1 1 1 1 1
Learning rate 0.3 0.5 0.4 0.9 0.7 0.4 0.4 0.2 0.7
Momentum 0.4 0.7 0.6 0.89 0.6 0.83 0.66 0.5 0.2
Gain 1 1 1 1 1 1 1 1 1
Number of iteration 1500 7000 2000 500 10000 5000 1600 5000 3000

network performance, the optimal network architecture and
parameters must be chosen. Studies on the network struc-
ture include the selection of the number of layers and the
number of nodes in each layer.

We confined our network to three layers, because learn-
ing of a network with higher layers is very complex and is
more time consuming. Since the high number of nodes in
the input layer will increase the learning time, the potential
data were subjected to principal component analysis before
introducing to the network and, therefore, the input of the
ANN model was the extracted principle components of the
potential data matrix. Since the number of nodes in the hid-
den layer is dependent on the number of input nodes, the
number of nodes in the input and hidden layers were opti-
mized simultaneously[32]. The eigenvectors were entered
step-by-step, and in each step the number of nodes in the
hidden layer was varied to reach the maximum value of S.E.

The network parameters that should be optimized include
the transfer functions in the layers, the momentum and the
learning rate. The most versatile transfer function that can
be used to model a variety of non-liner relationships is a
sigmoid transfer function. In our network, it was found that
the sigmoid transfer function in the hidden layer has a better
performance than the other transfer functions (i.e. tangent,
Gaussian and linear functions). The characteristics of the
optimized networks used to modeling the titration data are
summarized in theTable 3.

3.4. Prediction of cation concentrations in synthetic
mixtures

In order to complete our investigation about the perfor-
mance of the optimized model, the proposed ANN model
was used to predict the concentration of silver, copper and
mercury ions in some other mixtures that were not used
in the training and validation sets and the results are given
in Table 4. It is immediately obvious that the ANN model
possesses a high ability to predict the concentration of the
cations with low error levels. The prediction ability of a sin-
gle component and total components in the mixtures were
evaluated in terms of the percent relative error of the pre-
dicted concentrations, REP[34], root mean square error
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(RMSE), and square of correlation coefficient (r2) of the re-
sults. The low values of REP (in the range of 0.1–0.55%)
and RMSE (in the range of 0.02–0.54 mM) indicated that
the networks used can properly process the titration data and
model the complex relationship between the concentration
of cations in the mixture and the potential data at different
volumes of titrant. The plot of the predicted concentrations
of each cation in the binary and ternary mixtures versus their
actual concentrations showed a nice fit of data to a straight
line (with r2 > 0.990). This confirms the excellent predic-
tive ability of the networks used in this study.

4. Conclusions

A principle component ANN calibration model was pro-
posed for the simultaneous determination of silver, copper
and mercury ions, by a potentiometric titration method, using
an unmodified CPE as an indicator electrode. This model-
ing could nicely process the non-linear relationship between
the potential at a given volume of the titrant and predict the
concentration of cations in unknown sample solutions. For
all cations, low prediction errors and high correlation coef-
ficients (r > 0.990) were obtained.
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